Безопасность в Дельфи

       

Защита программ с помощью ключа


У с т а н о в к а

Чтобы установить систему защиты необходимо предпринять следующие шаги:
  • запрограммировать нужным образом электронный ключ, т. е. внести в его память информацию, по которой защищенная программа будет идентифицировать ключ
  • "привязать" к ключу программу путем установки автоматической защиты и/или защиты при помощи функций API

Программирование электронного ключа

Для программирования памяти ключа, в основном, используют специальные утилиты (****), с помощью которых считывается и перезаписывается содержимое полей памяти, редактируются, изменяются или удаляются сами поля, производится дистанционное программирование ключа. Также утилиты программирования используются для отладки схемы защиты. С их помощью проверяют правильность выполнения функций API, создают массивы вопросов и ответов ключа и т. п.

Способы защиты

Есть системы защиты, которые устанавливаются на исполняемые программные модули (навесная или автоматическая защита), и системы защиты, которые встраиваются в исходный код программы (защита при помощи функций API).

Автоматическая защита

Исполняемый файл программы обрабатывается соответствующей утилитой, входящей в комплект ПО для работы с ключами. Как правило, данный способ защиты почти полностью автоматизирован, процесс установки занимает всего несколько минут и не требует специальных знаний. После этого программа оказывается "настроенной" на электронный ключ с определенными параметрами. Утилиты автоматической защиты обычно имеют множество сервисных функций, которые позволяют выбирать различные режимы "привязки" программы к ключу и реализовывать дополнительные возможности. Например, такие, как защита от вирусов, ограничение времени работы и числа запусков программы и т. д. Однако следует иметь в виду, что этот способ не может обеспечить достаточную надежность. Так как модуль автоматической защиты прикрепляется к готовой программе, то есть вероятность, что опытному хакеру удастся найти "точку соединения" и "отцепить" такую защиту. Хорошая утилита автоматической защиты должна обладать опциями, затрудняющими попытки отладки и дизассемблирования защищенной программы.

Защита при помощи функций API

Этот метод защиты основан на использовании функций API (*****), собранных в объектных модулях. Функции API позволяют выполнять с ключом любые операции (поиск ключа с заданными характеристиками, чтение и запись данных, подсчет контрольных сумм, преобразование информации и т. п.). Это позволяет создавать нестандартные схемы защиты, подходящие для любых случаев. Вообще, можно сказать, что возможности API-защиты ограничены только богатством фантазии разработчика. Библиотеки специальных функций API и примеры их использования, написанные на различных языках программирования, должны входить в комплект программного обеспечения для работы с ключами. Для установки защиты необходимо написать вызовы нужных функций API, вставить их в исходный код программы и скомпилировать с объектными модулями. В результате защита окажется внедренной глубоко в тело программы. Использование функций API обеспечивает гораздо более высокую степень защищенности, чем автоматическая защита Практически единственный "недостаток" этого способа защиты, по мнению некоторых производителей ПО, заключается в дополнительных затратах на обучение персонала работе с API-функциями. Однако без использования API невозможно рассчитывать на приемлемую стойкость системы защиты. Поэтому в целях облегчения жизни разработчиков производители систем защиты работают над программами, упрощающими установку API-защиты.

Р а б о т а

В общих чертах работу системы защиты можно представить таким образом:
  • В процессе работы защищенная программа передает электронному ключу информацию, так называемый "вопрос".
  • Электронный ключ ее обрабатывает и возвращает обратно - "отвечает".
  • Программа на основе возвращенных данных идентифицирует ключ. Если он имеет верные параметры, программа продолжает работать. Если же параметры ключа не подходят, либо он не подсоединен, то программа прекращает свою работу или переходит в демонстрационный режим.

П р о т и в о д е й с т в и е в з л о м у

Противостояние разработчиков систем защиты и взломщиков (хакеров или кракеров) - это гонка вооружений. Постоянное совершенствование средств и способов взлома вынуждает разработчиков защиты непрерывно обновлять или изобретать новые средства и методы защиты, чтобы находиться на шаг впереди. Ведь схема, которая была эффективной вчера, сегодня может оказаться непригодной. Далее приведены основные методы взлома защиты и способы противодействия взлому.

Изготовление аппаратной копии ключа

Этот метод заключается в считывании специальными программными и аппаратными средствами содержимого микросхемы памяти ключа. Затем данные переносятся в микросхему другого ключа ("болванку"). Способ этот достаточно трудоемкий и может применяться, если память ключа не защищена от считывания информации (что было характерно для ключей, содержащих только память). К тому же, создание аппаратной копии ключа не решает проблему тиражирования программы, ведь она все равно остается "привязанной", но только к другому ключу. По этим причинам изготовление аппаратных копий ключей не получило широкого распространения

Изготовление эмулятора (программной копии) ключа

Самый распространенный и эффективный метод взлома, который заключается в создании программного модуля (в виде драйвера, библиотеки или резидентной программы), воспроизводящего (эмулирующего) работу электронного ключа. В результате защищенная программа перестает нуждаться в ключе. Эмуляторы могут воспроизводить работу ключей определенной модели, или ключей, поставляемых с какой-то программой, или одного конкретного ключа. По организации их можно разделить на эмуляторы структуры и эмуляторы ответов. Первые воспроизводят структуру ключа в деталях (обычно это универсальные эмуляторы), вторые работают на основе таблицы вопросов и ответов конкретного ключа. В простейшем случае для создания эмулятора хакер должен найти все возможные верные вопросы к ключу и сопоставить им ответы, то есть получить всю информацию, которой обменивается ключ и программа. Современные ключи обладают целым набором средств, предотвращающих эмуляцию. Прежде всего, это различные варианты усложнения протокола обмена ключа и защищенной программы, а также кодирование передаваемых данных. Используются следующие основные виды защищенных протоколов обмена или их сочетания:
  • плавающий протокол - вместе с реальными данными передается "мусор", причем со временем порядок чередования и характер, как реальных, так и ненужных данных, изменяется хаотическим образом
  • кодированный протокол - все передаваемые данные кодируются
  • с автоматической верификацией - любая операция записи в память ключа сопровождается автоматической проверкой данных на адекватность
Дополнительное усложнение протокола обмена достигается за счет увеличения объема передаваемых сведений и количества вопросов к ключу. Современные ключи обладают памятью, достаточной для обработки достаточно больших объемов данных. Например, ключ с памятью 256 байт может обработать за один сеанс до 200 байт информации. Составление таблицы вопросов к такому ключу на сегодняшний день представляется весьма трудоемкой задачей.

Отделение модуля автоматической защиты

Как уже говорилось ранее, автоматическая защита не обладает достаточной степенью стойкости, так как не составляет с защищенной программой единого целого. Вследствие чего, «конвертную защиту» можно, при известных усилиях, снять. Существует целый ряд инструментов, используемых хакерами для этой цели: специальные программы автоматического взлома, отладчики и дизассемблеры. Один из способов обхода защиты - определить точку, в которой завершается работа «конверта» защиты и управление передается защищенной программе. После этого принудительно сохранить программу в незащищенном виде. Однако в арсенале производителей систем защиты есть несколько приемов, позволяющих максимально затруднить процесс снятия защиты. Хорошая утилита автоматической защиты обязательно включает опции, которые обеспечивают
  • противодействие автоматическим программам взлома,
  • противодействие отладчикам и дизассемблерам (блокировка стандартных отладочных средств, динамическое кодирование модуля защиты, подсчет контрольных сумм участков программного кода, технология "безумного кода" и др.),
  • кодирование защищенной тела и оверлеев программы с помощью алгоритмов (функций) преобразования.

Удаление вызовов функций API

Чтобы удалить вызовы функций API из исходного текста программы, хакеры, используя отладчики и дизассемблеры, находят места, из которых происходят вызовы, или точки входа в функции, и соответствующим образом исправляют программный код. Однако при правильной организации API-защиты этот способ становится очень трудоемким. К тому же взломщик никогда не может быть до конца уверен, что правильно и полностью удалил защиту, и программа будет работать без сбоев. Существует несколько эффективных приемов противодействия попыткам удаления или обхода вызовов функций API:
  • использование "безумного кода": при создании функций API их команды перемешиваются с "мусором" - ненужными командами, т.о. код сильно зашумляется, что затрудняет исследование логики работы функций
  • использование множества точек входа в API: в хорошей API-защите каждая функция имеет свою точку входа. Для полной нейтрализации защиты злоумышленник должен отыскать все точки

С т о й к о с т ь

Программно-аппаратная защита предоставляет человеку, который ее внедряет, достаточно большую свободу действий. Даже при автоматической защите можно выбирать среди имеющихся опций и соответственно определять свойства защищенной программы. А уж при использовании функций API можно реализовать любую, даже самую изощренную модель защиты. Т. о. единой и детально расписанной схемы построения защиты не существует. Однако есть много способов придать защите дополнительную стойкость (ниже приводятся лишь некоторые из них).

Комбинирование автоматической и API защиты

Как говорилось выше, каждый из этих видов защиты имеет свои узкие места. Но вместе они прекрасно дополняют друг друга и составляют труднопреодолимую преграду даже для опытного взломщика. При этом автоматическая защита играет роль своеобразной скорлупы, внешнего рубежа, а защита API является ядром. Поэтому рекомендуется сначала встроить вызовы API в исходный код программы, а затем обработать исполняемый файл с помощью утилиты автоматической защиты.

API защита

При API-защите рекомендуется использовать несколько функций. Их вызовы необходимо распределить по коду приложения и перемешать переменные функций с переменными приложения. Таким образом, защита API оказывается глубоко внедренной в программу, и взломщику придется немало потрудиться, чтобы определить и выбрать все функции защиты. Обязательным является использование алгоритмов (или функций) преобразования данных. Кодирование информации делает бессмысленным удаление вызовов функций API, ведь при этом данные не будут декодированы. Эффективный прием усложнения логики защиты - это откладывание реакции программы на коды возврата функций API. В этом случае программа принимает решение о дальнейшей работе спустя какое-то время после получения кодов возврата. Что заставляет взломщика прослеживать сложные причинно-следственные связи и исследовать в отладчике слишком большие участки кода.

Автоматическая защита

При автоматической защите необходимо задействовать опции защиты от отладочных и дизассемблирующих средств, опции кодирования и проверки ключей по времени. Полезно также использовать защиту от вирусов. При этом проверяется CRC участков кода, а значит, файл предохраняется и от модификации.

Обновление системы защиты

После внедрения системы защиты важно не забывать о своевременном обновлении ПО для работы с ключами. Каждый новый релиз - это устраненные ошибки, закрытые "дыры" и новые возможности защиты. Также необходимо постоянно отслеживать ситуацию на рынке систем защиты и, в случае необходимости, своевременно менять систему защиты на более прогрессивную и надежную.


Содержание  Назад  Вперед